BookletChart[™] NOTATION ATMOSPHEA, Rappahannock River -Corrotoman River to Fredericksburg, VA NOAA Chart 12237 A reduced-scale NOAA nautical chart for small boaters When possible, use the full-size NOAA chart for navigation. - Complete, reduced-scale nautical chart - Print at home for free - Convenient size - Up-to-date with Notices to Mariners - Compiled by NOAA's Office of Coast Survey, the nation's chartmaker | | 5 | Appro
6 | ximate Page In | dex 8 | | |----|---|------------|----------------|-------|----| | 10 | 11
2000 - 1000 - | 12 | 13 | 14 | 15 | | 16 | 17 | 18 | 19 | 2.0 | 21 | # Published by the National Oceanic and Atmospheric Administration National Ocean Service Office of Coast Survey <u>www.NauticalCharts.NOAA.gov</u> 888-990-NOAA ## What are Nautical Charts? Nautical charts are a fundamental tool of marine navigation. They show water depths, obstructions, buoys, other aids to navigation, and much more. The information is shown in a way that promotes safe and efficient navigation. Chart carriage is mandatory on the commercial ships that carry America's commerce. They are also used on every Navy and Coast Guard ship, fishing and passenger vessels, and are widely carried by recreational boaters. ## What is a BookletChart[™]? This BookletChart is made to help recreational boaters locate themselves on the water. It has been reduced in scale for convenience, but otherwise contains all the information of the full-scale nautical chart. The bar scales have also been reduced, and are accurate when used to measure distances in this BookletChart. See the Note at the bottom of page 5 for the reduction in scale applied to this chart. Whenever possible, use the official, full scale NOAA nautical chart for navigation. Nautical chart sales agents are listed on the Internet at http://www.NauticalCharts.NOAA.gov. This BookletChart does NOT fulfill chart carriage requirements for regulated commercial vessels under Titles 33 and 44 of the Code of Federal Regulations. ## **Notice to Mariners Correction Status** This BookletChart has been updated for chart corrections published in the U.S. Coast Guard Local Notice to Mariners, the National Geospatial Intelligence Agency Weekly Notice to Mariners, and, where applicable, the Canadian Coast Guard Notice to Mariners. Additional chart corrections have been made by NOAA in advance of their publication in a Notice to Mariners. The last Notices to Mariners applied to this chart are listed in the Note at the bottom of page 7. Coast Pilot excerpts are not being corrected. For latest Coast Pilot excerpt visit the Office of Coast Survey website at http://www.nauticalcharts.noaa.gov/nsd/searchbychart.php?chart=122 http://www.nauticalcharts.noaa.gov/nsd/searchbychart.php?chart=122 http://www.nauticalcharts.noaa.gov/nsd/searchbychart.php?chart=122 http://www.nauticalcharts.noaa.gov/nsd/searchbychart.php?chart=122 http://www.nauticalcharts.noaa.gov/nsd/searchbychart.php?chart=122 http://www.nauticalcharts.noaa.gov/nsd/searchbychart.php?chart=122 http://www.nauticalcharts.noaa.gov/nsd/searchbychart.php?chart=122 <a href="http://www.nauticalcharts.noaa.gov/nsd/searchbycharts.noaa (Selected Excerpts from Coast Pilot) Rappahannock River flows into the west side of Chesapeake Bay 45.7 miles by channel from the Virginia Capes. Fredericksburg, 93 miles above the mouth, is the head of practical navigation. Traffic on the river consists chiefly of pulpwood, shellfish and shells, chemicals, and some sand and gravel. Drafts of vessels using the river seldom exceed 11 feet and are mostly 6 feet or less. **Mileages** on Rappahannock River, such as Mile 15N and Mile 32W, are the nautical miles above the midchannel point on a line drawn from Stingray Point to Windmill Point. The letters N, S, E, or W following the numbers denote by compass points the side of the river where each feature is located. The river has natural depths of 15 feet or more to the bridge at Tappahannock, 37.4 miles above the mouth. Above this point, a Federal project provides for dredging of the bars to provide a channel 12 feet deep to Fredericksburg. In 1955-1977, the controlling depths were 8.5 feet from the bridge at Tappahannock to the bridge at Port Royal, Mile 68.3, thence 9 feet to the Fredericksburg Bar, Mile 93.0, thence 6.5 feet to Steamboat Wharf and 4 feet to the Standard Oil Co. Wharf, Miles 93.1 and 93.2, respectively, at Fredericksburg. In
general, vessels can anchor anywhere near the channel of the Rappahannock River where the bottom is soft and the depth suitable. Deep-draft vessels will find good anchorage 3 to 5 miles from the mouth. Carter and Urbanna Creeks are used extensively as harbors by small craft. The channel from the mouth of Rappahannock River to Tappahannock is comparatively straight, but gradually decreases in width and leads between shoals that make out from both banks. The principal dangers are marked. Strangers can take a draft of 10 feet to Tappahannock by day with the aid of the chart, but navigation of the narrow, crooked channel farther up requires local knowledge. There are rocks in places on both sides of the channel for 4 miles below Fredericksburg, and the shores should be given a good berth. Strangers can safely carry a draft of 5 feet to Fredericksburg with the aid of the chart. Currents.—The currents follow the general direction of the channel. The velocities throughout the river are usually weak, averaging less than 1 knot at the entrance to 1.4 knots at Tappahannock. Times of slack water and strength of current become later going upriver. These normal conditions are subject to change by winds and changes in drainage flow. Ice.—During severe winters, ice closes the river nearly to Tappahannock, but in ordinary winters the channels are usually kept open by the river traffic. Ice sufficient to interfere with navigation of small craft will usually be encountered in January and February, particularly above Port Royal. **Supplies and Repairs.**—The principal places along Rappahannock River for supplies and small-vessel **repairs** are Broad Creek, Carter Creek, and Urbanna Creek. The entrance to Rappahannock River is between Stingray Point and Windmill Point, 45.7 miles above the Capes. This is the Mile 0.0 for distances on the Rappahannock. The shores on both sides of the entrance are wooded; the two lights, off Stingray and Windmill Points, are the most prominent landmarks. Rappahannock Spit extends southeastward from Windmill Point for about 4.5 miles, and has depths of 4 to 18 feet. Windmill Point Light (37°35'49"N., 76°14'10"W.), 34 feet above the water, is shown from a platform with a red and white diamond-shaped daymark, in depths of 12 feet on the spit 2.3 miles from the point. Depths of 10 feet can be carried across Rappahannock Spit anywhere outside Windmill Point Light. About 0.4 mile outside the light, a buoyed lane that extends southwestward through the fishtraps is a short cut for lightdraft vessels approaching the river from northward. U.S. Coast Guard Rescue Coordination Center 24 hour Regional Contact for Emergencies RCC Norfolk Commander 5th CG District (575) 398-6231 Norfolk, VA #### HEIGHTS Heights in feet above Mean High Water. #### DISTANCES ALVS e distances from the mouth of the annock River, between Stingray Poin dmill Point are in International itical Miles, and are indicated es are TRUE and must be CORRECTED Mileage distances from the mouth of the Rhappahannock River, between Stingray Point and Windmill Point are in International Nautical Miles, and are indicated thus: Courses are TRUE and must be CORRECTED for any variation and compass deviation. All craft should avoid areas where the skin divers flag, a red square with a diagonal white stripe, is displayed. #### CAUTION Small craft should stay clear of large com-rcial and government vessels even if small craft have the right-of-way. #### CAUTION Improved channels shown by broken lines are subject to shoaling, particularly at the edges. #### CAUTION Temporary changes or defects in aids to navigation are not indicated on this chart. See Local Notice to Mariners. Small craft should stay clear of large com-ercial and government vessels even if small craft have the right-of-way. #### CAUTION Improved channels shown by broken lines are subject to shoaling, particularly at the edges. #### CAUTION Mariners are warned to stay clear of the protective riprap surrounding navigational light structures shown thus: All craft should avoid areas where the skir ers flag, a red square with a diagonal white stripe, is displayed. #### CAUTION Temporary changes or defects in aids to navigation are not indicated on this chart. See Local Notice to Mariners. The prudent mariner will not rely solely on any single aid to navigation, particularly on floating aids. See U.S. Coast Guard Light List and U.S. Coast Pilot for details. #### POLLUTION REPORTS Report all spills of oil and hazardous substances to the National Response Center via 1-800-424-8802 (toll free), or to the nearest U.S. Coast Guard facility if telephone communication is impossible (33 CFR 153). SUBMARINE PIPELINES AND CABLES Charted submarine pipelines and submarine cables and submarine pipeline and cable area Pipeline Area Additional uncharted submarine pipelines and submarine cables may exist within the area of this chart. Not all submarine pipelines and sub-marine cables are required to be buried, and those that were originally buried may have become exposed. Mariners should use ex become exposed. Manners should use extreme caution when operating vessels in depths of water comparable to their draft in areas where pipelines and cables may exist, and when ancharing, dragging, or trawling. Covered wells may be marked by lighted of walkington them. unlighted buoys. # Table of Selected Chart Notes Radar reflectors have been placed on many floating aids to navigation. Individual radar reflector identification on these aids has been omitted from this chart. Pineline Area are shown as: Cable Area Additional uncharted submarine pipelines and narine cables are required to be buried, and hose that were originally buried may I pipelines and cables may exist, and when anchoring, dragging, or trawling. Covered wells may be marked by lighted or unlighted buoys. # unlighted buoys. #### CABLE FERRY Cable across the river may be at or near the water surface. Mariners should exercise caution when navigating in this area. #### CAUTION Limitations on the use of radio signals as aids to marine navigation can be found in the U.S. Coast Guard Light Lists and National Imagery and Mapping Agency Publication 117. Radio direction-finder bearings to commercial broadcasting stations are subject to error and should be used with caution. Station positions are shown thus: (Accurate location) o(Approximate location) #### HORIZONTAL DATUM The horizontal reference datum of this chart is North American Datum of 1983 (NAD 83), which for charting purposes is considered equivalent to the World Geodetic System 1984 (WGS 84). Geographic positions referred to the North American Datum of 1927 must be corrected an average of 0.477" northward and 1.115" eastward to agree with this chart. #### RAPPAHANNOCK RIVER The controlling depth at mean lower low water across the bars between Port Royal Bridge and the Fredericksburg Bar was 10 feet for a width of 100 feet, thence 6 feet to Old City Dock. #### RAPPAHANNOCK RIVER The controlling depth at mean lower low water across the bars between Port Royal Bridge and the Fredericksburg Bar was 10 feet for a width of 100 feet, thence 6 feet to Old City Dock. Apr - Jun 1977 ## CAUTION #### WARNINGS CONCERNING LARGE VESSELS The "Rules of the Road" state that recreational boats shall In o' Hules of the Hoad' state that recreational boats shall not impede the passage of a vessel that can navigate only within a narrow channel or fairway. Large vessels may appear to move slowly due to their large size but actually transit at speeds in excess of 12 knots, requiring a great distance in which to maneuver or stop. A large vessel's superstructure may block the wind with the result that exilibrate and ealtheart and universed the first three powers. sailboats and sailboards may unexpectedly find themselves unable to maneuver. Bow and stern waves can be hazardous to small vessels. Large vessels may not be able to see small craft close to their bows. #### ABBREVIATIONS (For complete list of Symbols and Abbreviations, see Chart No. 1) (ABRIDGED) Motorless craft have the right-of-way in almost all cases Sailing vessels and motorboats less than sixty-five feet in length shall not hamper, in a narrow channel, the safe passage of a vessel which can navigate only inside that A motorboat being overtaken has the right-of-way. Motorboats approaching head to head or nearly so should pass port to port. When motorboats approach each other at right angles of obliquely, the boat on the right has the right-of-way in most cases. Motorboats must keep to the right in narrow channels wher safe and practicable Mariners are urged to become familiar with the complete tex of the Rules of the Road in U.S. Coast Guard publication "Navigation Rules." ## AUTHORITIES Hydrography and topography by the National Ocean Service, Coast Survey, with additional data from the Corps of Engineers, Geological Survey, and U.S. Coast Guard. #### CAUTION ## FISH TRAP AREAS AND STRUCTURES Mariners are warned that numerous uncharted duck blinds and fishing structures, some submerged, may exist in the fish trap areas. Such structures are not charted unless known to be permanent. Regulations to assure clear passage to and through dredged and natural channels, and to established landings, are prescribed by the Corps of Engineers in the Code of Federal Regulations. Definite limits of fish trap areas have been established in some areas, and those limits are shown thus: Where definite limits have not been prescribed, the location of fishing structures is restricted only by the regulations. Locations of public marine facilities are shown by large magenta number ith leaders and refer to the facility tabulation. #### PUBLIC BOATING INSTRUCTION PROGRAMS The United States Power Squadrons (USPS) and U.S. Coast Guard Auxiliary (USCGAUX), national organizations of boatmen, conduct extensive boating in-struction programs in communities throughout the United States. For
informat-ion regarding these educational courses, contact the following sources: USPS - Local Squadron Commander or USPS Headquarters, Post Office Box 30423, Raleigh, N.C. 27612, 919-821-0281. USCGAUX-5th Coast Guard District, Federal Building, 431 Crawford St., Portsmouth, VA 23704-5004, Tel. 804-398-6208 or USCG Headquarters (G-BAU), Washington, D.C. 20593-0001. | TIDAL CURR | ENT D | ATA | | | | | | |--|---|---|---|--|--|--|--| | | POSI | TION | MAXIMUM CURRENTS | | | | | | | | | Flor | od | Et | ob | | | PLACE | Lat. | Long. | Direc-
tion
(true) | Aver-
age
veloc-
ity | Direc-
tion
(true) | Aver-
age
veloc-
ity | | | RAPPAHANNOCK RIVER | | | deg. | knots | deg. | knots | | | Towles Point Rogue Point, 0.8 mile WNW. of Waterview, 1.3 miles NNE. of Tarpley Point, 1.5 miles south of Jones Point, 1.4 miles NNW. of Sharps, 1.2 miles south of Bowlers Rock, 0.2 mile north of Accaceek Point, 0.3 mile SW. of Tappahannock Bridge, 1.8 miles SE. of Tappahannock Bridge Port Royal | 37°40'N
37°46'N
37°46'N
37°48'N
37°48'N
37°50'N
37°53'N
37°55'N
37°56'N | 76°33'W
76°36'W
76°39'W
76°42'W
76°44'W
76°44'W
76°44'W
76°49'W
76°51'W | 0
340
300
315
290
315
335
315
315 | 0.6
0.7
0.7
1.1
0.9
1.0
1.2
1.4
1.3
0.7 | 103
195
155
105
105
95
135
150
105
135
130 | 0.5
0.6
0.6
0.7
0.9
0.8
1.1
1.0
1.3
1.2 | | | P-(803) | / | / | 1~ | | | | | | | REVIATIONS (For
s to Navigation (lights a | | | ons, see Chart No. 1.) | | |-------------|--|---|--|---|---| | 5 | AERO aeronautical
Al alternating
B black
Bn beacon
C can
DIA diaphone
F fixed
FI flashing | Iso isoph
LT HO lig
M nautica
m minute | ghthouse
al mile
as
R microwave tower | Mo morse code N nun OBSC obscured Oc occulting Or orange Q quick R red Ra Ref radar reflector | R TR radio tower
Rot rotating
s seconds
SEC sector
St M statute miles
VQ very quick
W white
WHIS whistle | | Bott | om characteristics: | | | R Bn radiobeacon | Y yellow | | | Blds boulders
bk broken
Cy clay | Co coral
G gravel
Grs grass | gy gray
h hard
M mud | Oys oysters
Rk rock
S sand | so soft
Sh shells
sy sticky | | Mise
Koo | cellaneous: AUTH authorized ED existence doubt 21, Wreck, rock, ob (2) Rocks that cove | ful PA pos
ostruction, or shoa | | PD position doubtful
Repreported
depth indicated.
above datum of soundings | Subm submerged | THE LOCATIONS OF THE ABOVE PUBLIC MARINE FACILITIES ARE SHOWN ON THE CHART BY LARGE MAGENTA NUMBERS. THE TABULATED "APPROACH-FEET/REPORTED!" IS THE DEPTH AVAILABLE FROM THE NEAREST NATURAL OR DREDGED CHANNEL TO THE FACILIT Note: Chart grid lines are aligned with true north. | | | HAMPTON ROADS (Sewe | lls Pt.), VA. | | | | |--|--
--|--|--|--|---| | | AUGUST 2003 | mes and heights of high and low weter-Easte
addit local tide, apply the time difference listed
SEPTEMBER 2003 | in Standard Time. For Daylight Saving time, at
in the facility lebulations to these tide practi
OCTOBER 2003 | nd hour.
ctions.
NOVEMBER 2003 | DECEMBER 2003 | JANUARY 2004 | | | Time Ht. Day h.m. It. 1 0505 0.0 16 0536 0.7 1720 0.1 8053 0.7 1720 0.1 1808 0.4 2328 2.8 | Time Ht. Time Ht. Day h.m. ft. 1 0805 0.1 16 0008 2.4 M 1228 3.2 Tu 0810 0.6 | Time Ht. Time Ht. Day h.m. ft. 1 0032 2.6 16 0014 2.2 W 0638 0.2 Th 0614 0.7 | Time Ht. Day h.m. ft. Day h.m. ft. Day h.m. ft. | Time Ht. Time Ht. Day h.m. ft. 1 0311 2.3 16 0157 2.2 M 0923 0.3 Tu 0808 0.3 | Time Ht. Time Ht. Day h.m. ft. h.m. ft. h.m. ft. h.m. ft. h.m. ft. h.m. ft. 1 0422 2.3 16 0326 2.5 Th 1048 0.3 F 0956 0.1 | | | 2 0547 0.0 17 0010 2.5
5e 1158 2.8 Su 0616 0.3
1812 0.2 1231 2.7
1855 0.6 | 2 0048 2.5 17 0050 2.3
Tu 0857 0.2 W 0853 0.7
1326 3.1 1316 2.7
1955 0.4 1954 0.9 | 1310 3.2 1237 2.7
1942 0.4 1917 0.8
2 0134 2.5 17 0102 2.1
Th 0740 0.4 F 0703 0.7
1416 3.1 1329 2.5
2048 0.5 2013 0.8 | 2 0339 2.4 17 0229 2.1
Su 0947 0.5 M 0984 0.5
13 2.7 1451 2.4
2230 0.4 2124 0.4 | 2 0412 2.3 17 0256 2.3
Tu 1027 0.3 W 0913 0.2
1636 2.3 1515 2.2
2242 0.2 2135 0.0 | 2 0515 2-3 17 0432 2-8
F 1142 0-3 Se 1104 0-0
F 1733 1-8 1653 2-0
2328 0-1 2301 -0-2 | | | 3 0015 2.7 18 0051 2.3 18 0051 2.3 19 0632 2.9 1315 2.6 19 19 07 07 07 07 07 07 07 07 07 07 07 07 07 | 3 0147 2.5 18 0139 2.2
W 0754 0.3 Th 0742 0.7
1429 3.1
1410 2.6
210 0.5 2053 0.9
4 0552 2.4 19 0236 2.1
Th 0859 0.3 F 0839 0.8
1538 3.0 1611 2.6
2209 0.5 2154 0.9 | 3 0243 2.4 18 0189 2.1 F 0849 0.5 Sa 0801 0.8 1527 3.0 1428 2.6 2155 0.5 2112 0.8 4 0354 2.4 19 0303 2.2 Sa 0800 0.3 50 0808 0.7 1635 2.9 1531 2.8 2257 0.5 2209 0.7 | 3 0443 2.5 18 0330 2.3 M 053 0.4 T 0941 0.5 1712 2.7 1552 2.5 232 0.3 2217 0.3 4 0538 2.6 1803 2.6 1803 2.6 2509 0.1 | 3 0507 2.4 18 0357 2.5 W125 0.3 1 1620 0.1 1728 2.2 2326 0.2 2331 0.1 1617 2.2 2331 0.1 1617 2.2 1728 2.5 18 0457 2.7 18 126 0.3 18 15 2.2 18 0457 2.7 18 126 0.3 18 15 2.2 23327 0.2 2327 0.2 2327 0.2 2327 0.2 2327 0.2 2 | 3 0604 2.4 18 0538 2.7
\$e 1232 0.2 \$u 1209 -0.1
1821 1.9 1756 2.0
4 0015 0.0 19 0003 -0.3
\$u 0850 2.4 M 0641 2.9
1317 0.2 M 0641 2.9
1906 1.9 1900 2.1 | | | 5 0202 2.4 20 0225 2.1
10 0814 0.1 W 0828 0.6
1444 3.0 1458 2.5
2114 0.3 2136 0.8 | 5 0402 2.4 20 0340 2.1
F 1007 0.4 Se 0942 0.8
1646 3.0 1614 2.6
2314 0.5 2253 0.8 | 5 0501 2.5 20 0406 2.3
Su 1107 0.5 M 1012 0.6
1736 2.9 1632 2.7
2352 0.4 2302 0.5 | \$ 0007 0.3 20 0526 2.8
W 0826 2.7 Th 1147 0.1
1242 0.3 1748 2.6
1848 2.8 2359 -0.1 | 5 0011 0.1 20 0556 2.9 F 0639 2.6 Se 1224 -0.2 1817 2.3 1858 2.2 | 5 0100 0.0 20 0104 -0.4
M 0733 2.5 Tu 0739 3.0
1400 0.1 1404 -0.3
1948 1.9 1957 2.2 | | | 8 0304 2.3 21 0321 2.1 W 0913 0.1 Th 0922 2.5 2221 0.3 2236 0.8 2221 0.3 22 0421 2.1 h 1018 0.2 F 1020 0.6 1654 3.0 1856 2.6 2326 0.3 2333 0.7 | 8 0510 2.4 21 0443 2.2 51114 0.4 51 1044 0.7 1730 3.1 277 2345 0.7 7 0013 0.4 22 0540 2.4 51 0812 2.5 M 143 0.5 1947 3.1 | 8 0800 2.6 21 0505 2.5
M 1207 0.4 Tu 1114 0.5
1829 2.9 1729 2.8
2350 0.3
7 0040 0.3 22 0559 2.8
Tu 0850 2.8 W 1211 0.3
1916 2.9 1821 2.9 | 6 0048 0.2 21 0620 3.0 Th 0708 2.8 F244 -0.1 1327 0.3 1042 2.6 1929 2.5 Th 0708 070 | 6 0052 0.1 21 0022 -0.4 Sept. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 8 0143 -0.1 21 0201 -0.5
T 0814 2.5 W 0834 3.0
1441 0.5 W 1456 -0.4
2029 2.0 2051 2.3
7 0225 -0.1 22 0256 -0.5
W 0852 2.5 Th 0925 3.0
1520 0.0 1544 -0.4
2106 2.0 2142 2.4 | | | 8 0517 2.3 23 0519 2.1
F 1120 0.1 Se 1117 0.6
1758 3.1 1751 2.7 | 8 0104 0.3 23 0032 0.6
M 0706 2.7 Tu 0631 2.6
1312 0.2 1237 0.4
1937 3.1 1855 3.0 | 8 D122 0.3 23 0036 0.1
W D734 2.9 Th D849 3.1
1347 0.3 1305 0.1
1957 2.9 1911 2.9 | 8 0203 0.2 23 0139 -0.3
\$6 0323 2.9 \$0 0004 3.4
1447 0.2 1431 -0.3
2043 2.5 2026 2.6 | 8 0210 0.0 23 0212 -0.5
M 0836 2.7 Tu 0843 3.2
1503 0.1 1510 -0.4
2054 2.1 2102 2.4 | 8 0305 -0.1 23 0348 -0.5
Th 0930 2.6 F 1013 2.8
1857 0.0 1630 -0.4
2147 2.0 2231 2.4 | | | 9 0027 0.2 24 0024 0.6
9 0620 2.4 9 0614 2.8
1222 0.1 1212 0.5
1857 3.1 1841 2.8
10 0122 0.2 25 0110 0.5
1320 0.0 1303 0.4
1351 3.2 1927 2.9 | 9 0150 0.2 24 0115 0.3
Tu 0754 2.8 W 0719 2.9
1402 0.2 1328 0.2
2022 3.1 1841 3.1
10 0232 0.2 25 0157 0.1
W 0838 2.9 75 0005 3.1
1448 0.2 1418 0.1
2103 3.0 2027 3.1 | 9 0200 0.2 24 0121 0.0
Th 0813 3.0 F 0737 3.3
1429 0.3 1357 0.0
2038 2.8 1859 3.0
10 0238 0.2 25 0207 -0.1
F 0850 3.1 Sa 0825 3.5
1509 0.3 1448 -2.9
2142 2.8 2248 2.9 | 9 0236 0.2 24 0229 -0.4
50 0856 2.0 08565 3.5
10524 0.2 1524 -0.3
2118 2.4 118 2.6
10 0314 0.2 25 0320 -0.4
1602 0.3 1617 -0.3
2152 2.3 210 2.6 | 9 0248 0.0 24 0306 - 0.5
Tu 0912 2.7 W 0936 3.2
1542 0.1 2150 - 0.4
2131 2.1 250 - 2.4
10 0328 0.1 25 0400 - 0.5
W 0949 2.7 H 1029 3.7
1620 0.1 1652 - 0.3
2208 2.1 2249 2.3 | 9 0344 -0.1 24 0439 -0.4
F 1006 2.6 Se 1100 2.8
1634 -0.1 1714 -0.3
2225 2.1 2318 2.4
10 0425 -0.1 25 0529 -0.3
Se 1043 2.5 Se 1145 2.6
1710 -0.1 1757 -0.3 | | | M 0810 2.6 Tu 0749 2.6 1414 0.0 1351 0.2 2041 3.2 2011 3.0 | 11 0310 0.2 28 0299 0.0
Th 0918 3.0 F 0850 3.3
1532 0.2 1507 0.0
2141 2.9 2112 3.1 | 11 0311 | 11 0349 | 11 0404 0.1 26 0454 -0.4
Th 1026 2.6 F 1121 2.9
1658 0.2 1743 -0.3
2247 2.0 2342 2.3 | 11 0507 0.0 26 0005 2.4
Su 1122 2.5 M 0619 -0.1
1749 -0.1 1229 2.3
2348 2.2 1839 -0.1 | | | 22 0288 | 12 0346 0.2 27 0322 -0.1 F 9966 3.0 Se 0937 0.4 1957 0.4 218 2.8 218 2.8 218 3.0 218 3.0 218 3.0 25 3.5 8 633 0.4 1946 -0.1 853 0.4 1946 -0.1 853 0.4 254 2.7 2246 2.9 | 13 0419 0.4 28 0430 -0.1
M 1036 3.0 Tu 1058 3.5
1704 0.5
2256 2.4 2320 2.6 | 13 0503 | 13 0525 0.2 28 0037 2.3
Se 1145 2.5 Su 6846 0.0
1819 0.2 1306 2.5
1923 -0.1 | 13 0034 2.3 28 0141 2.3
Tu 0646 0.0 W 0804 0.2
1250 2.3 1402 1.9
1912 -0.1 2006 0.1 | | | 4 0422 | 14 0458 0.4 29 0452 0.0 50 110 2.9 M 115 3.5 1734 0.5 1742 0.1 2330 2.5 2337 2.8 2337 2.8 M 1148 2.8 Tu 1210 3.4 1616 0.7 1839 0.3 | 14 0455 | 14 0545 0.5 20 0103 2.3
F 1207 2.6 5 0709 0.1
1847 0.5 2000 0.1
15 0035 2.1 50 0207 2.3
50 0534 0.5 50 0615 0.3
1256 2.5 1439 2.5
1937 0.5 2057 0.2 | 14 0012 2.0 29 0133 2.2 Su 0013 0.2 M 0749 0.1 1229 2.4 1359 2.3 1903 0.2 2013 0.2 15 0102 2.1 30 0230 2.2 M 0707 0.3 14 0847 0.2 1951 0.1 2103 0.1 | 14 0126 2.3 29 0233 2.2 2 W 0734 0.1 Th 0901 0.3 1342 2.5 7 0.2 1453 1.8 2001 -0.1 2057 0.2 15 0223 2.4 30 0330 2.2 Th 0848 0.1 F 1001 0.4 1441 2.0 F 1549 1.7 2057 -0.1 2150 0.2 | | | 1723 0.3 1704 0.1
2331 2.7 2907 2.9
31 0519 0.0
Su 1136 3.2
2355 2.6 | 1818 0.7 1839 0.3 | 1828 0.7 1259 3.1 1255 0.3 1925 0.3 3 1 0121 2.4 F 0726 0.3 1400 2.9 2029 0.4 | 1496 4.5 | 1951 0.1 2103 0.1 2103 0.1 31 0328 2.2 W 0949 0.3 1550 1.9 2153 0.1 | 1441 2.0 1549 1.7
2057 -0.1 2150 0.2
31 0426 2.2
5e 10 0.4
1647 1.7
2246 0.2 | | | | Time meridien 75 W. COO
Heights are referred to mean lower low va | D is midnight. 1200 is noon.
ter which is the chart dotum of soundings. | | KAPP 577 | | | | \$6. N | | | | | | | 573 | | | | ottswood Bar | PANEL BELOW | Joins | | 7 | | | , M 12 | ottswood 5 | Joins Pa | ns pa | | Surfation Surface Surf | ged J | | as a seed of the s | | | page 6 | | 5m 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | TOTAL STATE OF THE | | | | S. S | | | | Epson Turn | | | | | | | To the Second Se | | Sundandandan | dunter of | | | 28 24 | | | | Sail Ko adjulation (1979) | danlandanda
Propositional dan | Ruffins Pond | | 3 Salar | | | 380
1111/11111 | Manager Manage | | But Ruth | | | | | | 300
111 1 | The state of s | ntimeter & | M 1 2 | Nam Reach 08 Reach | | SCALE 1:20,000 Nautical Miles | 8- | | Ludaning Control | | Amolds Bar Chan | Morelan | | O Statute Miles | | Je William Company and a second a second and | | The S | Change of the state stat | Surfaced | | Yards 72 0 500 1000 1500 | | 20 January | unhuntu, | | | | | LATITUDE | US 1 | | Farle | yvale Reach | | | | 40" 30' 20' 10' 0' 10
LONGITUDE | | | | | CONT | | | 50' 40' 30' 20' 10' 0' 10' | | Joins pag | e 11/// | 24 | - Surfaced B | | | DECEMBER 2003 | | | JANUARY 2004 | | | | FEBRUARY 2004 | | | | MARCH 2004 | | | | |---|--|----------------------------|------------------------------------|----------------------------|--------------------------------------|----------------------------|------------------------------------|-----------------------------|-------------------------------------|----------------------------|---|----------------------------|------------------------------------|----------------------------| | Day | t. Time
Day
t. h.m. | Ht. | Time
Day
h.m. | Ht. | Time
Day
h.m. | HL. | Time
Day
h.m. | Ht. | Time
Day
h.m. | Ht. | Time
Day
h.m. | HI. | Time
Day
h.m. | Ht. | | 1 0311 2
M 0923 0.
1539 2.
2151 0. | 3 Tu 0808 | 2.2
0.3
2.3
0.1 | 1 0422
Th 1048
1641
2240 | 2.3
0.3
1.9
0.1 | 16 0326
F 0956
1546
2157 | 2.5
0.1
2.0
-0.2 | I 0526
Su 1157
1743
2341 | 2.2
0.4
1.7
0.2 | 16 0528
M 1156
1748
2355 | 2.7
0.1
2.1
-0.2 | I 0442
M I I I I I
I I 70 I
2304 | 2.2
0.6
1.8
0.4 | 16 0519
Tu 1141
1740
2349 | 2.7
0.2
2.2
0.1 | | 2 0412 2
u 1027 0
1636 2
2242 0 | 3 W 0913
3 1515 | 2.3
0.2
2.2
0.0 | 2 0515
F 1142
1733
2328 | 2.3
0.3
1.8
0.1 | 17 0432
Se 1104
1653
2301 | 2.8
0.0
2.0
-0.2 | 2 0520
M 1248
1834 | 2.3
0.3
1.8 | 17 0633
Tu 1256
1850 | 2.8
0.0
2.2 | 2 0542
Tu 1210
1759 | 2.3
0.5
1.9 | 17 0621
W 1237
1840 | 2.8
0.1
2.4 | | 3 0507 2.
W 1125 0.
1728 2.
2328 0. | 3 Th 1020 | 2.5
0.1
2.2
-0.1 | 3 0604
Se
1232
1921 | 2.4
0.2
1.9 | 18 0538
Su 1209
1756 | 2.7
-0.1
2.0 | 3 0032
Tu 0707
1333
1922 | 0.1
2.4
0.2
1.9 | 18 0057
W 0730
1349
1946 | 0.3
2.9
0.2
2.4 | 3 0001
W 0634
1257
1850 | 0.3
2.4
0.3
2.1 | 18 0050
Th 0715
1326
1932 | 0.0
2.8
0.0
2.6 | | 4 0555 2.
h 1216 0.
1815 2. | 3 F 1124 | 2.7
0.0
2.2
-0.3 | 4 0015
Su 0650
1317
1906 | 0.0
2.4
0.2
1.9 | 19 0003
M 0641
1309
1900 | -0.3
2.9
-0.2
2.1 | 4 0119
W 0750
1415
2005 | 0.0
2.5
0.1
2.0 | 19 0154
Th 0821
1438
2037 | -0.3
2.9
-0.3
2.5 | 4 0052
Th 0719
1339
1935 | 0.1
2.5
0.2
2.3 | 19 0144
F 0803
1410
2018 | -0.1
2.8
-0.1
2.7 | | 5 0011 0.
F 0639 2.
1302 0.
1858 2. | 6 Sa 1224 | 2.9
-0.2
2.3 | 5 0100
M 0733
1400
1948 | 0.0
2.5
0.1
1.9 | 20 0104
Tu 0739
1404
1957 | -0.4
3.0
-0.3
2.2 | 5 0204
Th 0830
1453
2045 | -0.1
2.6
0.0
2.1 | 20 0246
F 0908
1520
2124 | -0.4
2.9
-0.3
2.6 | 5 0140
F 0801
1418
2017 | 0.0
2.6
0.0
2.4 | 20 0232
Se 0847
1451
2101 | -0.2
2.8
-0.1
2.8 | | 6 0052 0
6 0719 2
1344 0
1938 2 | 7 Su 0653 | -0.4
3.1
-0.3
2.3 | 6 0143
Tu 0814
1441
2029 | 0.1
2.5
0.0
2.0 | 2 020
W 0834
 1456
 205 | -0.5
3.0
-0.4
2.3 | 6 0246
F 0908
1530
2125 | -0.1
2.6
-0.1
2.3 | 2 0334
Se 0952
1601
2207 | 0.4
2.8
0.3
2.7 | 8 0224
Se 0840
1458
2058 | -0.1
2.7
-0.1
2.6 | 21 0317
Su 0927
1529
2140 | -0.2
2.7
-0.1
2.9 | | 7 0132 0.
u 0758 2.
1424 0.
2016 2. | 7 M 0749 | -0.5
3.2
-0.4
2.4 | 7 0225
W 0852
1520
2108 | 2.5
0.0
2.0 | 22 0256
Th 0925
1544
2142 | -0.5
3.0
-0.4
2.4 | 7 0327
Sn 0945
1605
2204 | -0.2
2.8
-0.2
2.4 | 22 0420
Su 1033
1640
2249 | -0.3
2.7
-0.2
2.7 | 7 0308
Su 0920
1533
2138 | -0.2
2.7
-0.2
2.8 | 22 0359
M 1005
1605
2218 | -0.1
2.6
-0.1
2.9 | | 8 0210 0
M 0836 2
1503 0
2054 2 | 7 Tu 0843 | -0.5
3.2
-0.4
2.4 | 8 0305
Th 0930
1557
2147 | -0.1
2.8
0.0
2.0 | 23 0348
F 1013
1630
2231 | -0.5
2.9
-0.4
2.4 | 8 0409
Su 1022
1641
2243 | -0.2
2.6
-0.2
2.5 | 23 0505
M 1113
1718
2330 | -0.2
2.5
-0.2
2.6 | 8 0352
M 1000
1610
2220 | -0.2
2.7
-0.2
2.9 | 23 0439
Tu 1042
1641
2255 | 0.0
2.5
0.0
2.8 | | 9 0248 0.
u 0912 2.
1542 0.
2131 2. | 7 W 0936 | -0.5
3.2
-0.4
2.4 | 9 0344
F 1006
1634
2225 | -0.1
2.5
-0.1
2.1 | 24 0439
Se 1100
1714
2318 | -0.4
2.8
-0.3
2.4 | 9 0453
M 1101
1718
2325 | -0.2
-0.2
-0.2
2.5 | 24 0549
Tu 1152
1756 | 0.0
2.3
0.0 | 9 0438
Tu 1041
1650
2304 | -0.2
2.6
-0.2
2.9 | 24 0519
W 1118
1717
2332 | 0.1
2.4
0.1
2.7 | | 0 0326 0
W 0949 2
1620 0
2208 2 | 7 Th 1029 | -0.5
3.1
-0.3
2.4 | 10 0425
Sn 1043
1710
2305 | -0.1
2.5
-0.1
2.1 | 25 0529
Su 1145
1757 | -0.3
2.6
-0.3 | 10 0539
Tu 1143
1758 | -0.1
2.4
-0.2 | 25 0011
W 0633
1232
1836 | 2.5
0.2
2.2
0.1 | 10 0526
W 1125
1733
2352 | -0.2
2.5
-0.2
2.9 | 25 0559
Th 1154
1755 | 0.3
2.2
0.2 | | 1 0404 0
h 1026 2
1656 0
2247 2 | 6 F 1121 | -0.4
2.9
-0.3
2.3 | 11 0507
Su 1122
1748
2348 | 0.0
2.5
-0.1
2.2 | 26 0005
M 0619
1229
1839 | 2.4
-0.1
2.3
-0.1 | II 0011
W 0630
1229
1842 | 2.6
-0.1
2.3
-0.2 | 28 0053
Th 0720
1314
1918 | 2.4
0.3
2.0
0.2 | 11 0817
Th 1212
1820 | 0.0
2.4
-0.1 | 26 0012
F 0642
1233
1836 | 2.6
0.4
2.1
0.4 | | 2 0443 0.
F 104 2.
 1738 0.
 2327 2. | 6 Se 1213
2 1833 | -0.2
2.7
-0.2 | 12 0554
M 1204
1828 | 0.0
2.4
-0.1 | 27 0053
Tu 0710
1314
1922 | 2.3
0.1
2.1
0.0 | 12 0102
Th 0726
1320
1933 | 2.6
0.0
2.2
-0.1 | 27 0141
F 0812
1401
2006 | 2.3
0.5
1.9
0.3 | 12 0045
F 0714
1306
1914 | 2.9
0.1
2.2
0.0 | 27 0056
Se 0730
1318
1923 | 2.4
0.6
2.0
0.5 | | 3 0525 0
a 1145 2.
1819 0 | 2 29 0037
5 Su 0646
2 1306
1923 | 2.3
0.0
2.5
-0.1 | 13 0034
Tu 0646
1250
1912 | 2.3
0.0
2.3
-0.1 | 29 0141
W 0804
1402
2006 | 2.3
0.2
1.9
0.1 | 13 0200
F 0830
1420
2031 | 2.6
0.1
0.5
-0.1 | 28 0235
Se 0911
1456
2101 | 2.2
0.6
1.8
0.4 | 13 0145
Se 0817
1407
2017 | 2.8
0.2
2.1
0.1 | 20 0147
Su 0025
1411
2018 | 2.3
0.7
1.9
0.5 | | 4 0012 2:
u 0613 0:
1229 2:
1903 0: | 2 M 0746 | 2.2
0.1
2.3
0.0 | 14 0126
W 0744
1342
2001 | 2.3
0.1
2.1
-0.1 | 29 0233
Th 0901
1453
2057 | 2.2
0.3
1.8
0.2 | 14 0306
Se 0939
1527
2137 | 2.6
0.2
2.0
0.0 | 29 0337
Su 1014
1558
2203 | 2.2
0.6
 .8
0.4 | 14 0254
Su 0927
1517
2128 | 2.7
0.3
2.1
0.2 | 29 0247
M 0926
1513
2120 | 2.3
0.7
1.9
0.6 | | 5 0102 2.
M 0707 0.
1319 2.
1951 0. | 3 Tu 0847 | 2.2
0.2
2.1
0.1 | 15 0223
Th 0848
1441
2057 | 2.4
0.1
2.0
-0.1 | 30 0330
F 1001
1549
2150 | 2.2
0.4
1.7
0.2 | 15 0418
Su 1050
1638
2247 | 2.6
0.2
2.0
-0.1 | | | 15 0406
M 1037
1631
2241 | 2.7
0.3
2.1
0.1 | 30 0352
Tu 1027
1618
2225 | 2.3
0.7
2.0
0.5 | | | 31 0328
W 0949
1550
2153 | 2.2
0.3
1.9
0.1 | | | 31 0426
Se 1101
1647
2246 | 2.2
0.4
1.7
0.2 | | | | | | | 31 0455
W 1123
1719
2326 | 2.3
0.6
2.1
0.4 | | APRIL | 2004 | MAY | 2004 | JUNE 2004 | JULY 2004 | |---|--|---|---|--|---| | Time Ht.
Day
humu ft. | Time Ht.
Day
h.m. It. | Time Ht.
Day
h.m. Ft. | Time Ht.
Day
h.m. ft. | Time Ht. Time Ht.
Day
h.m. ft. h.m. ft. | Time Ht. Time Ht.
Day
h.m. ft. h.m. ft. | | 1 0550 2.4
Th 1212 0.4
1812 2.3 | 16 0038 0.1
F 0653 2.7
1257 0.1
1911 2.8 | 1 0556 2.5
Se 1208 0.2
1822 2.6 | 16 0108 0.2
Su 0710 2.4
1304 0.1
1927 2.9 | 01 -0. 16 02 0.2
Tu 0706 2.4 W 0803 2.2
 1307 -0. 1353 0.2
 1935 3.3 202 2.8 | 0148 -0.1 | | 2 0021 0.3
F 0640 2.5
I255 0.2
I859 2.5 | 17 0129 0.0
Sa 0739 2.7
1339 0.1
1955 2.9 | 2 0043 0.1
Su 0647 2.6
1254 0.1
1911 3.0 | 17 0153 0.1
M 0752 2.4
1344 0.1
2007 2.9 | 2 0206 -0.2 17 0251 0.2 W 0600 2.5 Th 0843 2.2 1400 -0.2 2029 3.4 2100 2.8 | 2 0243 -0.2 17 0306 0.3
F 0837 2.5 Se 0859 2.2
1439 -0.3 1453 0.2
2110 3.3 2117 2.8 | | 3 0112 0.1
Se 0725 2.7
1337 0.1
1944 2.8 | 18 0215 0.0
Su 082 2.6
1418 0.0
2034 2.9 | 3 0135 0.0
M 0736 2.6
1340 -0.1
1959 3.2 | 18 0234 0.1
Tu 0831 2.4
1422 0.1
2045 2.9 | 3 0259 -0.2 18 0331 0.2
Th 0653 2.5 F 0922 2.2
1454 -0.3 1515 0.2
2123 3.4 2139 2.7 | 3 0337 -0.2 18 0344 0.2
Se 0933 2.6 Su 0938 2.3
1536 -0.3 1534 0.2
2204 3.3 2154 2.8 | | 4 0200 0.0
Su 0809 2.7
1417 0.0
2028 3.0 | 19 0257 0.0
M 0900 2.6
1455 0.1
2112 3.0 | 4 0226 -0.2
Tu 0825 2.5
1426 -0.2
2048 3.3 | 19 0314 0.1
W 0909 2.3
1501 0.2
2122 2.9 | 4 0353 -0.2 19 0409 0.2
F 0947 2.5 Sa 1000 2.2
1549 -0.2 1555 0.2
2218 3.3 2216 2.7 | 4 0428 -0.2 19 0420 0.2
Su 1028 2.5 M 1015 2.3
1633 -0.2 1614 0.3
2258 3.1 2229 2.7 | | 5 0247 -0.2
M 0852 2.8
1458 -0.1
2112 3.1 | 20 0336 0.0
Tu 0937 2.5
1531 0.1
2148 2.9 | 5 0316 -0.2
W 0914 2.6
I514 -0.2
2136 3.4 | 20 0352 0.2
Th 0946 2.3
1538 0.2
2159 2.8 | 5 0446 -0.2 20 0447 0.2
Se 1042 2.5 Su 1039 2.2
1645 -0.2 1634 0.3
2314 3.2 2253 2.8 | 5 0519 -0.2 20 0455 0.2
M 1122 2.7 Tu 1054 2.4
1730 -0.1 2350 3.0 2308 2.7 | | 6 0334 -0.2
Tu 0936 2.7
1540 -0.2
2158 3.2 | 2 04 5 0.
W 012 2.4
 607 0.2
 2224 2.8 | 6 0408 -0.2
Th 1003 2.6
1904 -0.2
2230 3.3 | 2 0430 0.2
F 1022 2.2
 1617 0.3
 2237 2.7 | 8 0540 -0.1 21 0524 0.3
Su [139 2.5 M [119 2.2
1744 -0.1 1716 0.3
2331 2.5 | 6 0808 -0.1 21 0530 0.2
Tu 1217 2.7 W 1133 2.5
1828 0.0 1739 0.3
2345 2.6 | | 7 0422 -0.2
W 1021 2.7
1625 -0.2
2245 3.2 | 22 0453 0.2
Th 1048 2.3
1844 0.2
2301 2.7 | 7 0500 -0.2
F 1055 2.6
1657 -0.1
2325 3.2 | 22 0509 0.3
Se 1100 2.2
1656 0.3
2315 2.6 | 7 0010 3.0 22 0602 0.3
M 0634 -0.1 Tu 1159 2.2
1237 2.5 1800 0.4 | 7 0043 2.8 22 0606 0.2
W 0557 0.0 Th 1215 2.6
1311 2.6 1826 0.3 | | 8 0513 -0.1
Th 1109 2.6
1712 -0.1
2337 3.2 | 23 0532 0.3
F 1124 2.2
1722 0.3
2340 2.6 | 8 0955 0.0
Se 1150 2.5
1754 0.0 | 23 0549 0.4
Su 40 2.
 737 0.4
 2355 2.5 | 8 0108 2.8 23 0011 2.5
Tu 0729 0.0 W 0841 0.3
1338 2.5 1243 2.3
1949 0.2 1848 0.4 | 6 0135 2.5 23 0027 2.5
Th 0746 0.1 F 0646 0.2
1406 2.5 1301 2.6
2026 0.3 1919 0.4 | | 9 0608 0.0
F 1200 2.5
1805 0.0 | 24 0613 0.5
Se 1203 2.1
1803 0.4 | 9 0023 3.1
Su 0852 0.1
1250 2.4
1856 0.1 | 24 0630 0.4
M 1223 2.1
1822 0.5 | 9 0207 2.6 24 0055 2.4
W 0623 0.1 Th 0722 0.3
1438 2.5
1331 2.4
2054 0.3 1942 0.4 | 9 0229 2.3 24 0114 2.4
F 0834 0.2 5e 0790 0.2
I501 2.6 1353 2.7
2126 0.4 2018 0.4 | | 10 0033 3.0
Se 0704 0.1
1257 2.3
1904 0.1 | 25 0022 2.5
Su 0657 0.6
1247 2.1
1849 0.5 | 10 0125 2.9
M 0752 0.2
1354 2.4
2003 0.2 | 25 0039 2.5
Tu 0714 0.5
1310 2.1
1913 0.5 | 10 0306 2.5
Th 0916 0.1 F 0807 0.2
1538 2.6 1423 2.5
2158 0.3 2042 0.4 | 10 0324 2.2 25 0208 2.3
Sa 0924 0.3 Su 0821 0.2
1556 2.5 1450 2.8
2225 0.4 2121 0.4 | | II 0138 2.9
Su 0807 0.3
1401 2.3
2010 0.2 | 28 0109 2.4
M 0747 0.6
1337 2.0
1942 0.6 | II 0230 2.7
Tu 0852 0.2
1500 2.4
2113 0.3 | 26 0127 2.4
W 0800 0.4
1402 2.2
2010 0.5 | 11 0404 | 11 0416 | | 12 0245 2.7
M 0913 0.3
1512 2.2
2122 0.3 | 27 0203 2.3
Tu 0841 0.6
1435 2.0
2042 0.6 | 12 0335 2.6
W 0951 0.2
1605 2.5
2221 0.3 | 27 0220 2.3
Th 0049 0.4
1458 2.3
2111 0.5 | 12 0459 2.2 27 0337 2.2
Se 1056 0.2 Su 0949 0.1
1726 2.7 1618 2.8
2353 0.3 2248 0.2 | 12 0512 2.0 27 0414 2.2
M 1104 0.3 Tu 1021 0.1
1741 2.6 1658 3.0
2333 0.3 | | 13 0356 2.7
Tu 1018 0.3
1623 2.3
2234 0.3 | 28 0303 2.3
W 0937 0.6
1536 2.1
2146 0.6 | 13 0437 2.5
Th 1046 0.2
1705 2.6
2323 0.3 | 26 0317 2.3
F 0940 0.3
1554 2.5
2214 0.4 | 13 0550 2.2 28 0439 2.2
Su 1143 0.2 M 1046 0.0
1814 2.7 1718 3.0
2351 0.1 | 13 0013 0.4 28 0520 2.3
Tu 0803 2.0 W 1125 0.1
1154 0.3 1803 3.1 | | 14 0503 2.7
W 1118 0.3
1727 2.5
2340 0.2 | 29 0403 2.3
Th 1030 0.5
1635 2.3
2249 0.5 | 14 0534 2.5
F 1135 0.2
1758 2.7 | 29 0415 2.3
Se 1031 0.2
1651 2.7
2316 0.2 | 14 0043 0.3 29 0541 2.3
M 0637 2.2 Tu 1144 0.0
1228 0.2 1818 3.1 | 14 0101 0.4 29 0035 0.2
W 0551 2.1 Th 0625 2.4
1242 0.3 1229 0.0
1916 2.7 1904 3.2 | | 15 0602 2.7
Th 1210 0.2
1823 2.6 | 30 0501 2.4
F 1120 0.4
1730 2.5
2348 0.3 | 15 0019 0.2
Se 0824 2.4
1221 0.2
1844 2.6 | 30 0514 2.3
Su 23 0.
 746 2.9 | 15 0128 0.2 30 0051 0.0
Tu 0721 2.2 W 0641 2.3
131 0.2 1243 -0.1
1941 2.8 1917 3.2 | 15 0145 | | | | | 3 00 5 0.
M 06 2.4
 2 5 0.0
 84 3. | | 31 0228 -0.1
5e 0823 2.8
1428 -0.2
2056 3.3 | AJGUST Time H1. | Tim Note: Chart grid lines are aligned with true north. | 2004 | | SEPTEMBER 2004 | | | , | α | ER 2004 | NO | /EMB | R 2004 | | | | |---|--------------------------|------------------------------------|--------------------------|------------------------------------|--------------------------|--------------------------------------|--------------------------|------------------------------------|--------------------------|------------------------------------|----------------------------|------------------------------------|--------------------------| | Time
Day
h.m. | Ht. | Time
Day
h.m. | HL. | Time
Day
h.m. | Ht. | | 18 0312
M 0911
1513
2127 | 0.3
2.8
0.3
2.9 | I 0417
W 1030
1647
2253 | 0.0
3.1
0.1
2.9 | 16 0345
Th 0957
1615
2214 | 0.2
3.1
0.2
2.8 | 042
F 1039
 1705
 230 | 0.2
3.1
0.4
2.6 | 16 0355
Sa 1017
1645
2237 | 0.0
3.4
0.1
2.7 | 1 0505
M 1128
1802
2349 | 0.4
2.8
0.6
2.2 | 16 0520
Tu 1151
1822 | 0.0
3.1
0.1 | | 17 0347
Tu 0948
1554
2203 | 0.2
2.7
0.3
2.8 | 2 0458
Th 1114
1735
2336 | 0.1
3.1
0.3
2.7 | 17 0423
F 1039
1701
2256 | 0.2
3.2
0.3
2.7 | 2 0459
Se 120
 749
 234 | 0.3
3.0
0.5
2.4 | 17 0440
Su 1107
1737
2327 | 0.1
3.3
0.2
2.6 | 2 0547
Tu 1212
1849 | 0.5
2.6
0.7 | 17 0015
W 0620
1252
1921 | 2.4
0.1
3.0
0.1 | | 18 0421
W 1026
1635
2240 | 0.2
2.8
0.3
2.8 | 3 0538
F 1157
1823 | 0.2
3.0
0.5 | 18 0503
Sa 1124
1751
2342 | 0.2
3.2
0.3
2.8 | 3 0539
Su 1202
1835 | 0.5
2.9
0.7 | 18 0531
M 1201
1834 | 0.2
3.2
0.3 | 3 0035
W 0635
1300
1940 | 2.1
0.8
2.5
0.7 | 18 0119
Th 0727
1356
2022 | 2.3
0.2
2.8
0.2 | | 19 0456
Th 1105
1719
2319 | 0.2
2.9
0.3
2.7 | 4 0019
Sa 0620
1243
1912 | 2.5
0.4
2.9
0.6 | 19 0549
Su 1215
1846 | 0.3
3.2
0.4 | 4 0023
M 0622
1249
1925 | 2.3
0.6
2.7
0.8 | 19 0023
Tu 0528
1302
1936 | 2.5
0.3
3.1
0.4 | 4 0128
Th 0729
1354
2034 | 2.1
0.7
2.4
0.7 | 19 0227
F 0838
1502
2122 | 2.4
0.3
2.7
0.2 | | 20 0533
F 48
 807 | 0.2
2.9
0.3 | 5 0104
Su 0704
1332
2008 | 2.3
0.5
2.7
0.8 | 20 0034
M 0640
1313
1947 | 2.5
0.3
3.1
0.5 | 5 0111
Tu 0711
1342
2022 | 2.2
0.7
2.6
0.9 | 20 0127
W 0734
1410
2042 | 2.4
0.4
3.0
0.5 | \$ 0227
F 0830
1452
2127 | 2.1
0.7
2.4
0.7 | 20 0335
Se 0949
1606
2218 | 2.4
0.3
2.6
0.1 | | 21 0002
Se 0614
1235
1900 | 2.6
0.2
3.0
0.4 | 6 0154
M 0754
1427
2105 | 2.2
0.6
2.6
0.9 | 21 0134
Tu 0741
1419
2054 | 2.4
0.4
3.0
0.6 | 6 0207
W 0808
1442
2121 | 2.1
0.8
2.5
0.9 | 21 0238
Th 0846
1520
2147 | 2.4
0.4
2.9
0.4 | 6 0328
Se 0933
1549
2218 | 2.2
0.7
2.4
0.5 | 21 0438
Su 1055
1704
2310 | 2.8
0.2
2.5
0.1 | | 22 005
Su 070
 329
 2000 | 2.5
0.3
3.0
0.5 | 7 0250
Tu 0850
1528
2205 | 2.1
0.7
2.6
0.9 | 22 0242
W 0850
1530
2203 | 2.3
0.5
3.0
0.6 | 7 0310
Th 0911
1544
2219 | 2.1
0.8
2.5
0.9 | 22 0350
F 1000
1628
2247 | 2.5
0.4
2.9
0.4 | 7 0425
Su 1034
1544
2304 | 2.3
0.8
2.4
0.4 | 22 0534
M 1154
1758
2358 | 2.7
0.2
2.4
0.0 | | 23 0147
M 0758
1430
2105 | 2.4
0.3
3.0
0.5 | 8 0351
W 0950
1630
2303 | 2.1
0.8
2.6
0.8 | 23 0356
Th 1003
1641
2307 | 2.4
0.4
3.0
0.5 | 8 0413
F 1014
1643
2310 | 2.2
0.8
2.6
0.7 | 23 0457
Se 1108
1728
2340 | 2.6
0.4
2.9
0.2 | 8 0517
M 1131
1735
2349 | 2.5
0.5
2.5
0.3 | 23 0524
Tu 246
 846 | 2.8
0.1
2.4 | | 24 0250
Tu 0859
 538
 2214 | 2.3
0.3
3.0
0.5 | 9 0452
Th 1050
1727
2355 | 2.2
0.7
2.6
0.7 | 24 0508
F 114
 1744 | 2.5
0.4
3.1 | 9 0510
Se 1113
1734
2356 | 2.3
0.7
2.6
0.6 | 24 0554
Su 1209
1822 | 2.8
0.3
2.9 | 9 0805
Tu 1223
1823 | 2.7
0.3
2.5 | 24 0042
W 0709
1333
1930 | 0.0
2.9
0.1
2.4 | | 25 0400
W 1007
1648
2320 | 2.3
0.3
3.0
0.4 | 10 0548
F 1146
1816 | 2.3
0.6
2.7 | 25 0004
Sa 0608
1217
1841 | 0.3
2.7
0.3
3.1 | 10 0559
Su 1206
1820 | 2.5
0.6
2.7 | 25 0028
M 0845
1302
1910 | 0.2
3.0
0.2
2.8 | 10 0032
W 0851
1313
1910 | 0.1
3.0
0.1
2.6 | 25 0124
Th 0751
1416
2010 | 0.0
2.9
0.1
2.3 | | 28 0510
Th 1117
1754 | 2.4
0.2
3.1 | II 0040
Sa 0636
I237
I900 | 0.6
2.4
0.5
2.8 | 26 0055
Su 0702
1314
1931 | 0.2
2.9
0.2
3.1 | II 0037
M 0644
I254
I903 | 0.4
2.7
0.4
2.8 | 26 0112
Tu 0731
1350
1954 | 0.1
3.1
0.1
2.8 | 11 0115
Th 0736
1401
1956 | 0.0
3.2
0.0
2.6 | 28 0204
F 0630
1457
2049 | 0.0
2.9
0.1
2.3 | | 27 0021
F 0616
1222
1854 | 0.3
2.5
0.1
3.2 | 12 0120
Su 0720
1323
1940 | 0.5
2.6
0.4
2.9 | 27 0140
M 0751
1405
2017 | 0.1
3.1
0.1
3.1 | 12 0116
Tu 0726
1340
1944 | 0.3
2.9
0.3
2.8 | 27 0153
W 0913
1435
2035 | 0.1
3.2
0.1
2.7 | 12 0200
F 0823
1450
2043 | -0.1
3.3
-0.1
2.6 | 27 0243
Se 0909
1537
2127 | 0.0
2.9
0.1
2.2 | | 28 0116
Se 0715
1322
1949 | 0.2
2.7
0.0
3.3 | 13 0158
M 0801
1407
2019 | 0.4
2.8
0.3
2.9 | 28 0223
Tu 0836
1453
2101 | 0.1
3.2
0.1
3.0 | 13 0154
W 0807
1425
2026 | 0.2
3.1
0.2
2.9 | 29 0232
Th 0853
1517
2114 | 0.1
3.2
0.1
2.8 | 13 0245
Se 0911
1540
2131 | -0.2
3.4
-0.1
2.8 | 29 0321
Su 0946
1616
2204 | 0.1
2.8
0.2
2.2 | | 29 0208
Su 0808
 4 8
 2039 | 0.0
2.9
0.0
3.3 | 14 0234
Tu 0839
1449
2057 | 0.3
2.9
0.3
2.9 | 29 0303
W 0919
1538
2142 | 0.1
3.2
0.1
2.9 | 14 0232
Th 0848
1510
2108 | 0.1
3.3
0.1
2.8 | 29 0310
F 0931
1558
2152 | 0.1
3.1
0.2
2.5 | 14 0333
Su 1001
1631
2222 | -0.2
3.4
-0.1
2.5 | 29 0400
M 1024
1855
2243 | 0.1
2.7
0.3
2.1 | | 30 0252
M 0858
1510
2125 | 0.0
3.0
0.0
3.2 | 15 0309
W 0918
1532
2135 | 0.2
3.0
0.2
2.9 | 30 0342
Th 0959
1622
2222 | 0.1
3.2
0.2
2.8 | 15 0312
F 0931
1556
2151 | 0.0
3.4
0.1
2.8 | 30 0347
Sa 1009
1638
2229 | 0.2
3.0
0.3
2.4 | 15 0424
M 1054
1725
2316 | -0.1
3.3
0.0
2.5 | 30 0439
Tu 1103
1735
2323 | 0.2
2.8
0.3
2.0 | | 31 0335
Tu 0945
1559
2210 | 0.0
3.1
0.0
3.1 | | | | | | | 31 0425
Su 1048
1719
2308 | 0.3
2.9
0.5
2.3 | | | | | NOAA and its partner, and critical corrections. Editions are available 5-8 about Print-on-Demand help@NauticalCharts.shelp@OceanGrafix.com. #### MARINE WEATHER FORECASTS | NATIONAL WEATHER SERVICE | TELEPHONE NUMBERS | OFFICE HOURS | |--------------------------------|-------------------|----------------| | Baltimore, MD / Washington, DC | *(703) 260-0107 | 24 hours daily | | Wakefield, VA | *(757)
899-4200 | 24 hours daily | | Newport, NC | *(252) 223-5737 | 24 hours daily | * Recorded ## NOAA WEATHER RADIO BROADCASTS | CITY | STATION | FREQ. | BROADCAST TIMES | |------------------|---------|-------------|-----------------| | Manassas, Va. | KHB-36 | 162.55 MHz | 24 hours daily | | Salisbury, Md. | KEC-92 | 162.475 MHz | 24 hours daily | | Norfolk, Va. | KHB-37 | 162.55 MHz | 24 hours daily | | Heathsville, Va. | WXM-57 | 162.40 MHz | 24 hours daily | # BROADCASTS OF MARINE WEATHER FORECASTS AND WARNINGS BY MARINE RADIOTELEPHONE STATIONS STATION BROADCAST TIMES-EST SPECIAL WARNI 2670 kHz 8:33 AM & 9:03 PM Hampton Roads, Va. NMN-80 * Recorded Distress calls for small craft are made on 2182 kHz or channel 16 (156.80 MHz) VHF. ## PUBLIC BOATING INSTRUCTION PROGRAMS The United States Power Squadrons (USPS) and U.S. Coast Guard Auxiliary (USCGAUX), national organizations of boatmen, conduct extensive boating instruction programs in communities throughout the United States. For information regarding these educational courses, contact the following sources: USPS - Local Squadron Commander or USPS Headquarters, Post Office Box 30423, Raleigh, N.C. 27612, 919-821-0281. USCGAUX-5th Coast Guard District, Federal Building, 431 Crawford St., Portsmouth, VA 23704-5004, Tel. 804-398-6208 or USCG Headquarters (G-BAU), Washington, D.C. 20593-0001. PRINT-ON-DEMAND CHARTS NOAA and its partner, OceanGrafix, offer this chart updated weekly by NOAA for Notices to Mariners and critical corrections. Charts are printed when ordered using Print-on-Demand technology. New Editions are available 5-8 weeks before their release as traditional NOAA charts. Ask your chart agent about Print-on-Demand charts or contact NOAA at 1-800-584-4683, http://NauticalCharts.gov, help@NauticalCharts.gov, or OceanGrafix at 1-877-56CHART, http://OceanGrafix.com, or help@OceanGrafix.com. MERCATOR PROJECTION AT SCALE 1:20,000 & 40,000 SOUNDINGS IN FEET AT MEAN LOWER LOW WATER NORTH AMERICAN DATUM OF 1983 (WORLD GEODETIC SYSTEM 1984) ## HEIGHTS Heights in feet above Mean High Water. #### AUTHORITIES Hydrography and topography by the National Ocean Service, Coast Survey, with additional data from the Corps of Engineers, Geological Survey, and U.S. Coast Guard. #### ABBREVIATIONS (For complete list of Symbols and Abbreviations, see Chart No. 1) #### WARNING NING The prudent mariner will not rely solely on any single aid to navigation, particularly on floating aids. See U.S. Coast Guard Light List and U.S. Coast Pilot for details. #### CAUTION This chart has been corrected from the Notice to Mariners (NM) published weekly by the National Imagery and Mapping Agency and the Local Notice to Mariners (LNM) issued periodically by each U.S. Coast Guard district to the dates shown in the lower left hand corner. #### SUPPLEMENTAL INFORMATION Consult U.S. Coast Pilot 3 for important supplemental information. Additional information can be obtained at nauticalcharts.noaa.gov. **NAUTICAL CHART 12237** # **RAPPAHANNOCK** CORROTOMAN RIVER O FREDERICKSBURG NSN 7642014010364 NIMA REFERENCE NO. 12XHA12237 Chart 12237 27th Ed., Sep./03 ■ Corrected through NM Sep. 20/03, LNM Sep. 2/03 Published at Washington, D.C. U.S. DEPARTMENT OF COMMERCE NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION NATIONAL OCEAN SERVICE COAST SURVEY Printed at reduced scale. SCALE 1:40,000 See Note on page 5. Note: Chart grid lines are aligned with true north. 1000 0 1000 2000 3000 4000 5000 Note: Chart grid lines are aligned with true north. Printed at reduced scale. SCALE 1:40,000 Nautical Miles Yards 1000 0 1000 2000 3000 4000 5000 Note: Chart grid lines are aligned with true north. Printed at reduced scale. SCALE 1:40,000 Nautical Miles See Note on page 5. Yards 1000 0 1000 2000 3000 4000 5000 Joins page 10 This nautical chart has been designed to promote safe harmonic to Coean Service encourages users to submit corrections, additions, or comments for improving this chart to the Chief, Marine Chart Division (N/CS2), National Ocean Service, NOAA, Silver Spring, Maryland 20910-3282. is North American Datum of 1983 (NAD 83), which for charting purposes is considered equivalent to the World Geodetic System 1984 (WGS 84). Geographic positions referred to the North American Datum of 1927 must be corrected an average of 0.477 northward and 1.115' eastward to agree with this chart. 12237 27th Ed., Sep./03; Corrected through NM Sep. 20/03, LNM Sep. 2/03 with true north. Note: Chart grid lines are aligned with true north. Printed at reduced scale. SCALE 1:40,000 Nautical Miles Yards 1000 0 1000 2000 3000 4000 5000 Note: Chart grid lines are aligned with true north. Printed at reduced scale. SCALE 1:40,000 Nautical Miles Yards 1000 0 1000 2000 3000 4000 5000 Printed at reduced scale. SCALE 1:40,000 See Note on page 5. Note: Chart grid lines are aligned with true north. ## VHF Marine Radio channels for use on the waterways: **Channel 6** – Inter-ship safety communications. Channel 9 – Communications between boats and ship-to-coast. Channel 13 – Navigation purposes at bridges, locks, and harbors. Channel 16 – Emergency, distress and safety calls to Coast Guard and others, and to initiate calls to other vessels. Contact the other vessel, agree to another channel, and then switch. Channel 22A – Calls between the Coast Guard and the public. Severe weather warnings, hazards to navigation and safety warnings are broadcast here. Channels 68, 69, 71, 72 and 78A – Recreational boat channels. **Getting and Giving Help** — Signal other boaters using visual distress signals (flares, orange flag, lights, arm signals); whistles; horns; and on your VHF radio. You are required by law to help boaters in trouble. Respond to distress signals, but do not endanger yourself. ## **Distress Call Procedures** - Make sure radio is on. - Select Channel 16. - Press/Hold the transmit button. - Clearly say: "MAYDAY, MAYDAY, MAYDAY." - Also give: Vessel Name and/or Description; Position and/or Location; Nature of Emergency; Number of People on Board. - · Release transmit button. - Wait for 10 seconds If no response Repeat MAYDAY call. HAVE ALL PERSONS PUT ON LIFE JACKETS! NOAA Weather Radio All Hazards (NWR) is a nationwide network of radio stations broadcasting continuous weather information directly from the nearest National Weather Service office. NWR broadcasts official Weather Service warnings, watches, forecasts and other hazard information 24 hours a day, 7 days a week. http://www.nws.noaa.gov/nwr/ # **Quick References** Nautical chart related products and information — http://www.nauticalcharts.noaa.gov Online chart viewer — http://www.nauticalcharts.noaa.gov/mcd/NOAAChartViewer.html Report a chart discrepancy — http://ocsdata.ncd.noaa.gov/idrs/discrepancy.aspx Chart and chart related inquiries and comments — http://ocsdata.ncd.noaa.gov/idrs/inquiry.aspx?frompage=ContactUs Chart updates (LNM and NM corrections) — http://www.nauticalcharts.noaa.gov/mcd/updates/LNM_NM.html Coast Pilot online — http://www.nauticalcharts.noaa.gov/nsd/cpdownload.htm Tides and Currents — http://tidesandcurrents.noaa.gov Marine Forecasts — http://www.nws.noaa.gov/om/marine/home.htm National Data Buoy Center — http://www.ndbc.noaa.gov/ NowCoast web portal for coastal conditions — http://www.nowcoast.noaa.gov/ National Weather Service — http://www.weather.gov/ National Hurrican Center — http://www.nhc.noaa.gov/ Pacific Tsunami Warning Center — http://ptwc.weather.gov/ Contact Us — http://www.nauticalcharts.noaa.gov/staff/contact.htm For the latest news from Coast Survey, follow @nauticalcharts This Booklet chart has been designed for duplex printing (printed on front and back of one sheet). If a duplex option is not available on your printer, you may print each sheet and arrange them back-to-back to allow for the proper layout when viewing.